Inhibiting Axon Degeneration and Synapse Loss Attenuates Apoptosis and Disease Progression in a Mouse Model of Motoneuron Disease
نویسندگان
چکیده
Apoptosis is a hallmark of motoneuron diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) [1]. In a widely used mouse model of motoneuron disease (progressive motor neuronopathy or pmn) [2-4], transgenic expression of the anti-apoptotic bcl-2 gene [5] or treatment with glial cell-derived neurotrophic factor [6] prevents the apoptosis of the motoneuron soma; however, they were unable to affect the life span of the animals. The goal of the present work was to determine whether the pmn phenotype could be rescued by means of a gene that inhibits axon degeneration. For this reason, the pmn mice were crossed with mice bearing the dominant Wlds ("slow Wallerian degeneration") mutation, which slows axon degeneration and synapse loss [7-9]. We show here that the Wlds gene product attenuates symptoms, extends life span, prevents axon degeneration, rescues motoneuron number and size, and delays retrograde transport deficits in pmn/pmn mice. These results suggest new pathogenic mechanisms and therapeutic avenues for motoneuron diseases.
منابع مشابه
Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملProgrammed axon death, synaptic dysfunction and the ubiquitin proteasome system.
Axons are essential, vulnerable and often irreplaceable so it is essential to understand how they are lost in neurodegenerative disease. Recent data link the mechanism of injury-induced Wallerian degeneration to that of axon death in CNS and PNS disease. The neuroprotective gene Wld(S) delays Wallerian degeneration, CNS axonal dystrophy, 'dying-back' pathology and to a lesser extent synapse los...
متن کاملSpread of tau down neural circuits precedes synapse and neuronal loss in the rTgTauEC mouse model of early Alzheimer's disease
Synaptic dysfunction and loss is the strongest pathological correlate of cognitive decline in Alzheimer's disease (AD) with increasing evidence implicating neuropathological tau protein in this process. Despite the knowledge that tau spreads through defined synaptic circuits, it is currently unknown whether synapse loss occurs before the accumulation of tau or as a consequence. To address this,...
متن کاملMissense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease
Progressive motor neuronopathy (pmn) mutant mice have been widely used as a model for human motoneuron disease. Mice that are homozygous for the pmn gene defect appear healthy at birth but develop progressive motoneuron disease, resulting in severe skeletal muscle weakness and respiratory failure by postnatal week 3. The disease starts at the motor endplates, and then leads to axonal loss and f...
متن کاملP 106: Effects of Dimethyl Sulfoxide on NLRP3 Inflammasome and Alzheimer\'s Disease
Alzheimer's disease (AD), the most ordinary form of dementia and extracellular accumulation of Amyloid-β (Aβ) in senile plaques, is an important and a main event in the pathogenesis of AD. Deposition of Aβ Peptide initiates a spectrum of cellular responses that are interposed by the resident neuroimmune cells of the brain, the microglia. Recently, a novel inflammasome signaling&n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 13 شماره
صفحات -
تاریخ انتشار 2003